SQLAIchemy-ORM-tree Documentation
Release 0.2.0

RokuSigma Inc. and contributors

July 05, 2016

Contents

Installation

API

2.1 Managers e e e e e e e e e e e e e e
2.2 ORMEXIENSIONS . . . v v v v e i e
0 Y 1 <
24 OPHONS .« . v v vt e
2.5 EXCEPHONS . . . v v o it e e e e e e e e e e e e e e e e
Authors

Roadmap

4.1 dev ..o e
History

5.0 0.2.0-dev . . . e

Simple Example

Indices and tables

13

15
15

17
17

19

21

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

Contents:

Contents 1

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Installation

At the command line:

’$ easy_install sglalchemy-orm-tree

Or from pip:

‘$ pip install sglalchemy-orm-tree

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

4 Chapter 1. Installation

CHAPTER 2

API

2.1 Managers

class sglalchemy_tree.manager.TreeClassManager (node_class, options, mapper_extension, ses-

sion_extension)
Node class manager, which handles tree-wide operations such as insertion, deletion, and moving nodes around.

No need to create it by hand: it is created by :class:TreeManager.
Parameters
* node_class — class which was mapped to tree table.
* options —instance of :class:TreeOptions

all_ancestors_of (descendant, *args, **kwargs)
Return False unless every one of the remaining positional arguments is a ancestor of the first.

all_child_nodes (*args)
Return False unless every one of the positional arguments is a child node.

all_children_of (parent, *args)
Return False unless every one of the remaining positional arguments is a child of the first.

all_descendants_of (ancestor, *args, **kwargs)
Return False unless every one of the remaining positional arguments is a descendant of the first.

all_leaf nodes (*args)
Return False unless every one of the positional arguments is a leaf node.

all_root_nodes (*args)
Return False unless every one of the positional arguments is a root node.

all_siblings_of (sibling, *args, **kwargs)
Return False unless every one of the remaining positional arguments is a sibling of the first.

any_ ancestors_of (descendant, *args, **kwargs)
Return True if the first positional argument is a descendant of any of the positional arguments that follow.

any_child_nodes (*args)
Return True if any of the positional arguments are child nodes.

any children_of (parent, *args)
Return True if the first positional argument is the parent of any of the positional arguments that follow.

any_descendants_of (ancestor, *args, **kwargs)
Return True if the first positional argument is a ancestor of any of the positional arguments that follow.

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

any_ leaf nodes (*args)
Return True if any of the positional arguments are leaf nodes.

any_root_nodes (*args)
Return True if any of the positional arguments are root nodes.

any_ siblings_of (sibling, *args, **kwargs)
Return True if the first positional argument is a sibling of any of the positional arguments that follow.

filter_ancestors_of_node (*args, **kwargs)
Returns a filter condition for the ancestors of passed-in nodes.

filter_children_of_node (*args)
Returns a filter condition for the children of passed-in nodes.

filter_descendants_of_node (*args, **kwargs)
Returns a filter condition for the descendants of passed-in nodes.

filter leaf nodes ()
Creates a filter condition containing all leaf nodes.

filter_leaf nodes_by_ tree_id (*args)
Creates a filter condition containing all leaf nodes of the tree(s) specified through the positional arguments
(interpreted as tree ids).

filter_leaf nodes_of_node (*args, **kwargs)
Get a filter condition returning the leaf nodes of the descendants of the passed-in nodes.

filter_next_siblings_of_node (*args, **kwargs)
Returns a filter condition identifying siblings to the right of passed-in nodes.

filter_parent_of_ node (*args)
Get a filter condition for the parents of passed-in nodes.

filter_previous_siblings_of_node (*args, **kwargs)
Returns a filter condition identifying siblings to the left of passed-in nodes.

filter_root_node_by_ tree_id (*args)
Get a filter condition returning root nodes of the tree specified through the positional arguments (interpreted
as tree ids).

filter_root_node_of_node (*args)
Get a filter condition returning the root nodes of the trees which include the passed-in nodes.

filter root_nodes ()
Get a filter condition for all root nodes.

filter_siblings_of_ node (*args, **kwargs)
Returns a filter condition identifying siblings of passed-in nodes.

query_ancestors_of_node (*args, **kwargs)
Returns a query containing the ancestors of passed-in nodes.

query_children_of node (*args, **kwargs)
Returns a query containing the children of passed-in nodes.

query_descendants_of_node (*args, **kwargs)
Returns a query containing the descendants of passed-in nodes.

query_leaf_ nodes (session=None, *args, **kwargs)
Returns a query containing all leaf nodes.

6 Chapter 2. API

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

query_leaf nodes_by_tree_id (*args, **kwargs)
Returns a query containing all leaf nodes of the tree(s) specified through the positional arguments (in-
terpreted as tree ids) using filter_leaf_nodes_by_tree_id and the session associated with this
node. The session must be passed explicitly if called from a class manager.

query_leaf nodes_of_node (*args, **kwargs)
Returns the leaf nodes of the descendants of the passed-in nodes, using
filter_leaf_nodes_by_tree_id. The session used to perform the query is either a) the
session explicitly passed in, b) the session associated with the first bound positional parameter, or c) the
session associated with the instance manager’s node.

query_next_siblings_of_ node (*args, **kwargs)
Returns a query containing siblings to the right of passed-in nodes.

query_parent_of_node (*args, **kwargs)
Returns a query containing the parents of passed-in nodes.

query_previous_siblings_of_node (*args, **kwargs)
Returns a query containing siblings to the left of passed-in nodes.

query_root_node_by_ tree_id (*args, **kwargs)
Returns the root nodes of the trees specified through the positional arguments (interpreted as tree ids) using
filter_root_node_by_tree_id and the session associated with this node. The session must be
passed explicitly if called from a class manager.

query_root_node_of_node (*args, **kwargs)
Returns the root nodes of the trees which contain the passed in nodes, using
filter_root_node_by_tree_id. The session used to perform the query is either a) the
session explicitly passed in, b) the session associated with the first bound positional parameter, or c) the
session associated with the instance manager’s node.

query_root_nodes (session=None, *args, **kwargs)
Convenience method that gets a query for all root nodes using filter_root_nodes and the session
associated with this node. The session must be passed explicitly if called from a class manager.

query_siblings_of node (*args, **kwargs)
Returns a query containing the siblings of passed-in nodes.

rebuild (*args, **kwargs)
Rebuild tree parameters on the basis of adjacency relations for all nodes under the subtrees rooted by the
nodes passed as positional arguments. Specifying no positional arguments performs a complete rebuild of
all trees.

Parameters order_by — an “order by clause” for sorting children nodes of each subtree.

TODO: Support order_by. What about the rest of sqlalchemy_tree. Is any order_by used when inserting a
new node?

class sglalchemy_tree.manager.TreeInstanceManager (class_manager, obj, *args, **kwargs)

A node manager, unique for each node instance. Created on first access to TreeManager descriptor from
instance. Implements API to query nodes related somehow to a particular node: descendants, ancestors, etc.

Parameters

* class_manager — the TreeClassManager associated with the node class, which is
used to perform tree-altering behaviors.

* obj — particular node instance.

filter_ancestors (include_self=False)
The same as filter_ descendants () but filters ancestor nodes.

2.1.

Managers 7

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

filter children ()
The same as filter_descendants () but filters direct children only and does not accept an
include_self parameter.

filter_descendants (include_self=False)
Get a filter condition for node’s descendants.

Requires that node has tree_id, left, right and depth values available (that means it has “persistent version”
even if the node itself is in “detached” state or it is in “pending” state in autoflush-enabled session).

Usage example:

session.query (Node) .filter (root.mp.filter_descendants()) \
.order_by (Node.mp)

This example is silly and meant only to illustrate the syntax for using filter_descendants, don’t use it for
such purpose as there is a better way for such simple queries: query_descendants ().

Parameters include_self — bool, if set to True, include this node in the filter as well.
Returns a filter clause applicable as argument for sqlalchemy.orm.Query.filter() and others.

filter_leaf_ nodes (include_self=False)
Creates a filter containing leaf nodes of this node instance.

Requires that node has tree_id, left, right and depth values available (that means it has “persistent version”
even if the node itself is in “detached” state or it is in “pending” state in autoflush-enabled session).

Parameters include_self — bool, if set to True, the filter will also include this node (if it is
a leaf node).

filter_next_siblings (include_self=False)
Get a filter condition for the siblings of a node which occur subsequent to it in tree ordering.

filter_parent ()
Get a filter condition for a node’s parent.

filter_previous_siblings (include_self=False)
Get a filter condition for the siblings of a node which occur prior to it in tree ordering.

filter root_node ()
Return a filter condition identifying the root node of the tree which includes this node.

filter_siblings (include_self=False)
Get a filter condition for a node’s siblings.

get_descendant_count ()
Returns the number of descendants this node has.

is_ancestor_of (descendant, include_self=False)
Returns True if the passed-in node is a descendant of this node.

is_child node
Returns True if the node has a parent.

is_child_of (parent)
Returns True if the passed-in node is parent to this node.

is_descendant_of (ancestor, include_self=False)
Returns True if the passed-in node is an ancestor of this node.

is_leaf node
Returns True if the node has no children.

8 Chapter 2. API

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

is_root_node
Returns True if the node has no parent.

is_sibling_of (sibling, include_self=True)
Returns True if the passed-in node is a sibling to this node.

next_sibling
Returns the next sibling with respect to tree ordering, or None.

previous_sibling
Returns the previous sibling with respect to tree ordering, or None.

query_ancestors (session=None, include_self=False)
The same as query_descendants () but queries node’s ancestors.

query_children (session=None)
The same as query_descendants () but queries direct children only and does not accept an
include_self parameter.

query_descendants (session=None, include_self=False)
Get a query for node’s descendants.

Requires that node is in “persistent” state or in “pending” state in autoflush-enabled session.
Parameters

* session - session object for query. If not provided, node’s session is used. If node is in
“detached” state and session is not provided, query will be detached too (will require
setting session attribute to execute).

* include_self — bool, if set to True self node will be selected by query.
Returns a sglalchemy.orm.Query object which contains only node’s descendants.

query_leaf nodes (session=None, include_self=False)
Returns a query containing leaf nodes of this node instance.

Requires that node has tree_id, left, right and depth values available (that means it has “persistent version”
even if the node itself is in “detached” state or it is in “pending” state in autoflush-enabled session).

Parameters

* session - session object for query. If not provided, node’s session is used. If node is in
“detached” state and session is not provided, query will be detached too (will require
setting session attribute to execute).

¢ include_self - bool, if set to True, the filter will also include this node (if it is a leaf
node).

Returns a sglalchemy.orm.Query object which contains only node’s descendants which are
themselves leaf nodes.

query_next_siblings (session=None, include_self=False)
Get a query containing the siblings of a node which occur subsequent to it in tree ordering.

query_previous_siblings (session=None, include_self=False)
Get a query containing the siblings of a node which occur prior to it in tree ordering.

query_root_node ()
Return a query containing the root node of the tree which includes this node.

query_siblings (session=None, include_self=False)
Get a query containing a nodes siblings.

2.1.

Managers 9

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

root_node
Return the root node of the tree which includes this node.

class sglalchemy_tree.manager.TreeManager (*args, **kwargs)

Extension class to create required fields and access class-level and instance-level API based on context.

Basic usage is simple:

class Node (object) :
tree = sglalchemy_tree.TreeManager (node_table)

After Node is mapped:
Node.tree.register ()

Now there is an ability to get an instance manager or class manager via the property ‘mp’ depending on the way
in which it is accessed. Node.mp will return the mapper extension until the class is mapped (useful for setting up
parameters to pass to the mapper function itself), the class manager TreeClassManager after mapping, and
instance_node.mp will return instance_node’s TreeInstanceManager. See those classes for more details
about their public APT’s.

Parameters

* table - instance of sqlalchemy.Table. A table that will be mapped to the node class and
will hold tree nodes in its rows. The adjacency-list link/self- referential foreign-key will
be automatically determined, and the additional four columns “tree_id”, “left”, “right” and
“depth” will automatically be added if necessary. table is the only one strictly required
argument.

* parent_id field=None - a self-referencing foreign key field containing the parent
node’s primary key. If this parameter is omitted, it will be guessed joining a fable with itself
and using the right part of join’s ON clause as parent id field.

* tree_id_field='tree_id’ - the name of the tree id field, or the field object itself.
The field will be created if the actual parameter value is a string and there is no such column
in the table table. If the value provided is or names an existing SQLAlchemy column
object, that object must pass some sanity checks: it must be in table, it should have
nullable=False, and be of type TreeIdField.

* left_field='tree_left’ —the same as for tree_id_field, except that the type
of this column should be TreeLeftField.

* right_field='tree_right’ - the same as for tree_id_field, except that the
type of this column should be TreeRightField.

* depth_field='tree_depth’ — the same as for tree_id_field, except that the
type of this column should be TreeDepthField.

* instance_manager_attr=’'_tree_instance_manager’ - name for node in-
stance’s attribute to cache node’s instance manager.

Warning: Do not change the values of TreeManager constructor’s arguments after saving a first tree node.
Doing so will corrupt the tree.

2.2 ORM Extensions

class sglalchemy_tree.orm.TreeMapperExtension (options)

An extension to a node class’ mapper, handling insertion, deletion, and updates of tree nodes. This class is

10

Chapter 2. API

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

instantiated by the manager object, and the average developer need not bother himself with it.
Parameters options —instance of TreeOptions

after_delete (mapper, connection, node)
Just after an existent node is updated.

after_insert (mapper, connection, node)
Just after a previously non-existent node is inserted into the tree.

after_update (mapper, connection, node)
Just after an existent node is updated.

before_delete (mapper, connection, node)
Just prior to an existent node being deleted.

before_insert (mapper, connection, node)
Just prior to a previously non-existent node being inserted into the tree.

Sets up the tree state (tree_id, left, right and depth) for node (which has not yet been inserted
into in the database) so it will be positioned relative to a given target node in the manner specified by
position (the insertion parameters), with any necessary space already having been made for it.

target and position are stored on a hidden attribute of node, having been set when
TreeManager.insert was called by the user, or otherwise auto-generated by the session’s
before_flush handler.

A target of None indicates that node should become the last root node, which is a constant-time
insertion operation. (Positioning root nodes with respect to other root nodes can be accomplished by
using the POSITION_LEFT or POSITION_RIGHT constants and specifying the neighboring root node
as target.)

Accepted values for position are POSITION_FIRST_CHILD, POSITION_LAST_CHILD,
POSITION_LEFT or POSITION_RIGHT.POSITION_LAST_CHILD is likely to cause the least num-
ber of row updates, so therefore it is the default behavior if position is not specified.

before_update (mapper, connection, node)
Called just prior to an existent node being updated.

Possibly moves node relative to a given target node as specified by position (when appropriate),
by examining both nodes and calling the appropriate method to perform the move.

target and position are stored on a hidden attribute of node, having been set when
TreeManager.insert was called by the user, or otherwise auto-generated by the session’s
before_flush handler upon detection of an adjacency-list change.

A target of None indicates that node should be made into the last root node. (Positioning
root nodes with respect to other root nodes can be accomplished by using the POSITION_LEFT or
POSITION_RIGHT constants and specifying the neighboring root node as target.)

Valid values for position are POSITION_LEFT, POSITION_RIGHT,POSITION_FIRST_CHILD
or POSITION_LAST_CHILD.

node will be modified to reflect its new tree state in the database. Depending on the type of the move, a
good many other nodes might be modified as well.

This method explicitly checks for node being made a sibling of a root node, as this is a special case due
to our use of tree ids to order root nodes.

class sqglalchemy_tree.orm.TreeSessionExtension (options, node_class)
An session extension handling insertion, deletion, and updates of tree nodes. This class is instantiated by the
manager object, and the average developer need not bother himself with it.

2.2. ORM Extensions 11

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

Parameters
* options —instance of TreeOptions
* node_class — the mapped object class for tree nodes

before_flush (session, flush_context, instances)
Just prior to a flush event, while we still have time to modify the flush plan.

2.3 Types

class sglalchemy_tree.types.TreeDepthType (*args, **kwargs)
Integer field subtype representing an node’s depth level.

class sqglalchemy_tree.types.TreeEndpointType (*args, **kwargs)
Abstract base class of an integer implementing either a “left” or “right” field of a node.

class sglalchemy_tree.types.TreeIldType (*args, **kwargs)
Integer field subtype representing an node’s tree identifier.

class sglalchemy_tree.types.TreelntegerType (*args, **kwargs)
Abstract base class implementing an integer type.

impl
alias of Integer

class sglalchemy_tree.types.TreeLeftType (*args, **kwargs)
Integer field subtype representing an node’s “left” field.

class sglalchemy_tree.types.TreeRightType (*args, **kwargs)
Integer field subtype representing an node’s “right” level.

2.4 Options

class sglalchemy_tree.options.TreeOptions (table, instance_manager_attr, par-
ent_id_field=None, tree_id_field=None,
left_field=None, right_field=None,

depth_field=None, _attach_columns=True)
A container for options for one tree.

Parameters see TreeManager.

order_by_clause ()
Get an object applicable for usage as an argument for Query.order_by(). Used to sort subtree query by
tree_id then left.

2.5 Exceptions

class sglalchemy_tree.exceptions.InvalidMoveError
An invalid node move was attempted. For example, attempting to make a node a child of itself.

12 Chapter 2. API

CHAPTER 3

Authors

The primary author of SQLAlchemy-ORM-tree is Mark Friedenbach <mark @monetize.io>.
Others who have contributed to the application:

¢ Jonathan Buchanan et al. (authors of Django MPTT)

* Anton Gritsay <anton@angri.ru> (author of SQLAMP)

 Tony Narlock <tony @ git-pull.com>

¢ Michael Elsdorfer <michael @elsdoerfer.com>

13

mailto:mark@monetize.io
mailto:anton@angri.ru
mailto:tony@git-pull.com
mailto:michael@elsdoerfer.com

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

14 Chapter 3. Authors

CHAPTER 4

Roadmap

4.1 dev

* Python 2+3 support (Issue #2)
* Farey fractions isntead of integer intervals (Issue #4)
* SQLAIchemy 0.9 Declarative syntax support (Issue #3)

For more, see the issues on github:

15

https://github.com/monetizeio/sqlalchemy-orm-tree/issues/2
https://github.com/monetizeio/sqlalchemy-orm-tree/issues/4
https://github.com/monetizeio/sqlalchemy-orm-tree/issues/3
https://github.com/monetizeio/sqlalchemy-orm-tree/issues?page=1&state=open

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

16 Chapter 4. Roadmap

CHAPTER 5

History

5.1 0.2.0-dev

Released: Ongoing

5.1.1 tests

o [tests]
— Update testsuite to werkzeug/flask format.
— Split tests into multiple files
— Coveralls.io and Travis support

q References: #11, #5, pull request 8

5.1.2 docs

¢ [docs]
— __future__ imports for . py files.
— Replaces some instances of £ilter with list comprehensions.

— Created a py2map inside of _compat to import into code, which preserves python 2.x’s map behavior
in python 3.

— Update README.rst for python 3 support
— Update setup . py classifier data
— Update Travis for python 3.3 support (they don’t have 3.4 support yet, tox passes 3.4 for me though)
— Import reduce from functools.
— Add tox.ini file.
9 References: #2, pull request 20
* [docs] SQLAIchemy-ORM-tree now has a ReadTheDocs page at http://sqlalchemy-orm-tree.readthedocs.org/.
Changelog
TODO ¢ References: #7

17

https://github.com/monetizeio/sqlalchemy-orm-tree/issues/11
https://github.com/monetizeio/sqlalchemy-orm-tree/issues/5
https://github.com/monetizeio/sqlalchemy-orm-tree/pulls/8
https://github.com/monetizeio/sqlalchemy-orm-tree/issues/2
https://github.com/monetizeio/sqlalchemy-orm-tree/pulls/20
http://sqlalchemy-orm-tree.readthedocs.org/
https://github.com/monetizeio/sqlalchemy-orm-tree/issues/7

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

5.1.3 internals

¢ [internals]
- PEPS
— Package modernization
7 References: #5, #6, pull request 8, pull request 10

An implementation for SQLAlchemy-based applications of the nested-sets / modified-pre-order-tree-traversal tech-
nique for storing hierarchical data in a relational database.

Python support Python 2.6+, 3.3+

SQLAlchemy SQLAIchemy >=0.7.5, >=0.8, >=0.9

Source https://github.com/monetizeio/sqlalchemy-orm-tree

Issues https://github.com/monetizeio/sqlalchemy-orm-
tree/issues

Docs https://sqlalchemy-orm-tree.readthedocs.org/

API https://sqlalchemy-orm-tree.readthedocs.org/api.html

Travis http://travis-ci.org/monetizeio/sqlalchemy-orm-tree

Test coverage https://coveralls.io/r/monetizeio/sqlalchemy-orm-tree

pypi https://pypi.python.org/pypi/sqlalchemy-orm-tree

ohloh http://www.ohloh.net/p/sqlalchemy-orm-tree

License BSD.

git repo

$ git clone https://github.com/monetiz

eio/sqglalche

install ,)
$ pip install sglalchemy-orm-tree

install dev ,) .
git clone https://github.com/monetiz

cd ./sglalchemy-orm-tree
virtualenv .env

source .env/bin/activate
pip install -e

vy Uy Ur Ur

eio/sqlalche

tests
$ python setup.py test

18 Chapter 5. History

https://github.com/monetizeio/sqlalchemy-orm-tree/issues/5
https://github.com/monetizeio/sqlalchemy-orm-tree/issues/6
https://github.com/monetizeio/sqlalchemy-orm-tree/pulls/8
https://github.com/monetizeio/sqlalchemy-orm-tree/pulls/10
https://github.com/monetizeio/sqlalchemy-orm-tree
https://github.com/monetizeio/sqlalchemy-orm-tree/issues
https://github.com/monetizeio/sqlalchemy-orm-tree/issues
https://sqlalchemy-orm-tree.readthedocs.org/
https://sqlalchemy-orm-tree.readthedocs.org/api.html
http://travis-ci.org/monetizeio/sqlalchemy-orm-tree
https://coveralls.io/r/monetizeio/sqlalchemy-orm-tree
https://pypi.python.org/pypi/sqlalchemy-orm-tree
http://www.ohloh.net/p/sqlalchemy-orm-tree
http://opensource.org/licenses/BSD-3-Clause

CHAPTER 6

Simple Example

import sqlalchemy_ tree
Model = declarative_base (metaclass=sglalchemy_tree.DeclarativeMeta)

class Page (Model) :

This activates sqglalchemy-orm-tree.
__tree_manager___ = 'tree'

Page.tree.register()

19

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

20 Chapter 6. Simple Example

CHAPTER 7

Indices and tables

¢ genindex
* modindex

e search

21

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

22 Chapter 7. Indices and tables

Index

A method), 12
after_delete() (sqlalchemy_tree.orm. TreeMapperExtension before_insert() (sqlalchemy_tree.orm.TreeMapperExtension
method), 11 method), 11
after_insert() (sqlalchemy_tree.orm.TreeMapperExtension before_update() (sqlalchemy_tree.orm.TreeMapperExtension
method), 11 method), 11
after_update() (sqlalchemy_tree.orm.TreeMapperExtension F
method), 11
all_ancestors_of() (sqlalchemy_tree.manager.TreeClassManﬁé@_ancestors() (sqlalchemy_tree.manager.TreelnstanceManager
method), 5 method), 7
all_child_nodes() (sqlalchemy_tree.manager. TreeClassMandégr_ancestors_of_node()
method), 5 (sqlalchemy_tree.manager.TreeClassManager
all_children_of() (sqlalchemy_tree.manager.TreeClassManager method), 6
method), 5 filter_children() (sqlalchemy_tree.manager.TreeInstanceManager
all_descendants_of() (sqlalchemy_tree.manager. TreeClassManager method), 7
method), 5 filter_children_of_node()
all_leaf_nodes() (sqlalchemy_tree.manager.TreeClassManager (sqlalchemy_tree.manager.TreeClassManager
method), 5 method), 6
all_root_nodes() (sqlalchemy_tree.manager. TreeClassManagdfer_descendants() (sqlalchemy_tree.manager. TreeInstanceManager
method), 5 method), 8
all_siblings_of() (sqlalchemy_tree.manager. TreeClassManagfer_descendants_of_node()
method), 5 (sqlalchemy_tree.manager.TreeClassManager
any_ancestors_of() (sqlalchemy_tree.manager.TreeClassManager ~ method), 6
method), 5 filter_leaf_nodes() (sqlalchemy_tree.manager.TreeClassManager
any_child_nodes() (sqlalchemy_tree.manager. TreeClassManager method), 6
method), 5 filter_leaf_nodes() (sqlalchemy_tree.manager.TreelnstanceManager
any_children_of() (sqlalchemy_tree.manager.TreeClassManager method), 8
method), 5 filter_leaf_nodes_by_tree_id()
any_descendants_of() (sqlalchemy_tree.manager. TreeClassManager (sqlalchemy_tree.manager.TreeClassManager
method), 5 method), 6
any_leaf_nodes() (sqlalchemy_tree.manager. TreeClassManafdiigr_leaf_nodes_of_node()
method), 5 (sqlalchemy_tree.manager.TreeClassManager
any_root_nodes() (sqlalchemy_tree.manager.TreeClassManager method), 6
method), 6 filter_next_siblings() (sqlalchemy_tree.manager.TreelnstanceManager
any_siblings_of() (sqlalchemy_tree.manager. TreeClassManager method), 8
method), 6 filter_next_siblings_of_node()
(sqlalchemy_tree.manager.TreeClassManager
B method), 6
before_delete() (Sqlalchemy_tree.orm.TreeMapperExtensiorplter—Paremo (sqlalchemy_tree.manager.TreelnstanceManager
method), 11 method), 8
before_flush() (sqlalchemy._tree.orm. TreeSessionExtension filter_parent_of_node() (sqlalchemy_tree.manager.TreeClassManager
- N method), 6

23

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

filter_previous_siblings() P
(sqlalchemy_tree.manager.TreeInstanceManager previous_sibling (sqlalchemy_tree.manager. TreelnstanceManager
method), 8 attribute), 9

filter_previous_siblings_of_node()
(sqlalchemy_tree.manager.TreeClassManager Q

method), 6 uery_ancestors() (sqlalchemy_tree.manager.TreeInstanceManager
filter_root_node() (sqlalchemy_tree.manager.TreeInstanceManager -
method), 9
method), 8

query_ancestors_of_node()

filter_root_node_by_tree_id() (sqlalchemy_tree.manager.TreeClassManager

(sqlalchemy_tree.manager.TreeClassManager

thod). 6 method), 6
ﬁlter_root?lrfo d::)_())’f_no de() query_chiidl:t:lrll(())d()scgalchemy_tree.manager.TreeInstanceManager

(sqlalchemy_tree.manager.TreeClassManager query_children_of_node()

method), 6 (sqlalchemy_tree.manager.TreeClassManager
filter_root_nodes() (sqlalchemy_tree.manager.TreeClassManager method), 6 -
method), 6 ue descendant;() (sqlalchemy_tree.manager.TreelnstanceManager
filter_siblings() (sqlalchemy_tree.manager.TreeInstanceMan%.gegy_ method), 9 d y-tee: get g
method), 8 ue descendant; of_node()
filter_siblings_of_node() (sqlalchemy_tree.manager.TreeCla%stZr_lage(lalch - TreeClassM
method), 6 sqlalchemy_tree.manager.TreeClassManager
method), 6
G query_leaf_nodes() (sqlalchemy_tree.manager.TreeClassManager
method), 6
get_descendant_count() (sqlalchemy_tree.manager.TreeInsthggg_Gﬁodes() (sqlalchemy_tree.manager. TreeInstanceManager
method), 8 method), 9
| query_leaf_nodes_by_tree_id()
(sqlalchemy_tree.manager.TreeClassManager
impl (sqlalchemy_tree.types.TreelntegerType attribute), method), 6
12 query_leaf_nodes_of_node()
InvalidMoveError (class in sqlalchemy_tree.exceptions), (sglalchemy_tree.manager. TreeClassManager
12 method), 7
is_ancestor_of() (sqlalchemy_tree.manager.TreeInstanceManagey_next_siblings() (sqlalchemy_tree.manager. TreeInstanceManager
method), 8 method), 9
is_child_node (sqlalchemy_tree.manager.TreeInstanceManageery_next_siblings_of_node()
attribute), 8 (sqlalchemy_tree.manager.TreeClassManager
is_child_of() (sqlalchemy_tree.manager.TreelnstanceManager method), 7
method), 8 query_parent_of_node() (sqlalchemy_tree.manager.TreeClassManager
is_descendant_of() (sqlalchemy_tree.manager.TreelnstanceManager method), 7
method), 8 query_previous_siblings()
is_leaf_node (sqlalchemy_tree.manager.TreelnstanceManager (sglalchemy_tree.manager. TreeInstanceManager
attribute), 8 method), 9
is_root_node (sqlalchemy_tree.manager. TreelnstanceManaggtiery_previous_siblings_of node()
attribute), 8 (sqlalchemy_tree.manager.TreeClassManager
is_sibling_of() (sqlalchemy_tree.manager.TreelnstanceManager method), 7
method), 9 query_root_node() (sqlalchemy_tree.manager.TreeInstanceManager
method), 9
N query_root_node_by_tree_id()
next_sibling (sqlalchemy_tree.manager.TreeInstanceManager (sqlalchemy_tree.manager.TreeClassManager
attribute), 9 method), 7
query_root_node_of_node()
@) (sqlalchemy_tree.manager.TreeClassManager
order_by_clause() (sqlalchemy_tree.options.TreeOptions method), 7
method), 12 query_root_nodes() (sqlalchemy_tree.manager.TreeClassManager
method), 7

24 Index

SQLAIchemy-ORM-tree Documentation, Release 0.2.0

query_siblings() (sqlalchemy_tree.manager.TreeInstanceManager
method), 9

query_siblings_of_node()
(sqlalchemy_tree.manager.TreeClassManager
method), 7

R

rebuild() (sqlalchemy_tree.manager.TreeClassManager
method), 7

root_node (sqlalchemy_tree.manager.TreelnstanceManager
attribute), 9

T

TreeClassManager (class in sqlalchemy_tree.manager), 5
TreeDepthType (class in sqlalchemy_tree.types), 12
TreeEndpointType (class in sqlalchemy_tree.types), 12
TreeldType (class in sqlalchemy_tree.types), 12
TreelnstanceManager (class in
sqlalchemy_tree.manager), 7
TreelntegerType (class in sqlalchemy_tree.types), 12
TreeLeftType (class in sqlalchemy_tree.types), 12
TreeManager (class in sqlalchemy_tree.manager), 10
TreeMapperExtension (class in sqlalchemy_tree.orm), 10
TreeOptions (class in sqlalchemy_tree.options), 12
TreeRightType (class in sqlalchemy_tree.types), 12
TreeSessionExtension (class in sqlalchemy_tree.orm), 11

Index 25

	Installation
	API
	Managers
	ORM Extensions
	Types
	Options
	Exceptions

	Authors
	Roadmap
	dev

	History
	0.2.0-dev

	Simple Example
	Indices and tables

